
eee aS
HOME COMPUTER
ADVANCED COURSE
MAKING THE MOST OF YOUR MICRO

Ne. -

\ ee ee uh we
Lhe te Dh PPR
Ve te Oa oe

Se AP PO Ot Pw
Ue ee ob ob oP PS
48

VV HE eH PG SHH Tuy
M wv a a a Dig ~ ” wv “wv wis

Rk, 4, 56,98 4, 80M, 8
PES RR 8, Se, 4F tt ee ae ee

OR Oe ee ee ee ee ee ; —
iy Re ee ee ee nen

in RON SG Pe ot Go te |

5

*

NaRO) elise utle eeliet
IR£1 Aus $195 NZ $2.25 SA R195 Sing $4.50 USA & Can $1.95 |

APPLICATIONS

COMMON DENOMINATOR BasicoDE is
a language that irons out many of the
problems of incompatibility between micros

HARDWARE

PIECE OF THE ACTION The ACT
Apricot is the latest offering from the makers 24
of the successful Sirius business computer

RANDOM SELECTION We discuss the ?
creation of random access files

JARGON

FROM CARRIER TONE TO
CENTRONICS A weekly glossary of
computing terms

KEEPING TIME We look at three types of
logic circuit that produce timing signals ©

PROGRAMMING PROJECTS

ANIMAL MAGIC We develop a computer
game that ‘learns’ from experience

POWERS OF RESOLUTION Our course
for the Commodore 64 progresses to high
and low resolution graphics

MACHINE CODE

LAST IN FIRST OUT We learn how to use
the stack — a convenient workspace in
computer memory

THE CAMBRIDGE CONNECTION ©
Camputers is another successful computer
manufacturer based in Cambridge

Next Week
The attractive Atmos is the
successor to the Oric 1. It
boasts a quality keyboard,
48K of memory, colour
graphics and has its own disk
drive and printer.

Word processing is a popular
application for business
machines but it can prove
tricky on home micros. We
look at this important feature
on the popular micros.

COMING SOON — A course on
machine code programming
for the 6809 microprocessor
as used in the Dragon and
Tandy Color computers.

1) What is wrong with the line: 225 CLS in
BASICODE?

2) Why do records in a random access file have to be
of the same length?

3) What is the name of the process by which a
computer controls the individual bits that make up
the machine's screen memory?

4)Why did Camputers not have to worry too much
about software for the Lynx Laureate?

Answers To Last Week’s Quiz

A1) By removing the barrel, more ambient light is allowed to enter
the photo-diode, therefore making it more difficult to focus on the
screen.

A2) Feedback is useful to a computer when it needs to ‘sense’ the
result of its actions on a peripheral device.

A3) A NOR gate will return a result of one if the input is zero and
vice versa, it is therefore ideal as a switching device.

AA) The binary number to switch bit 7 to zero is 01111111. This
would require an AND operation.

UlZ
COVER PHOTOGRAPHY BY IAN McKINNELL

Editor Jim Lennox: Art Director David Whelan: Technical Editor Brian Morris; Production Editor Catherine Cardwell: Picture Editor Claudia Zeff; Sub Editor Robert Pickering; Designer Julian Dorr; Art Assistant Liz Dixon, Editorial

Assistant Stephen Malone; Contributors Steven Colwill, Max Phillips, Gareth Jefferson, Richard Pawson; Group Art Director Perry Neville; Managing Director Stephen England; Published by Orbis Publishing Ltd: Editorial Director Brian

innes; Project Development Peter Brookesmith; Executive Editor Chris Cooper, Production Co-ordinator |an Paton; Circulation Director David Breed; Marketing Director Michael Joyce; Designed and produced by Bunch Partworks Ltd;

Editorial Office 85 Charlotte Street, London W1P 1LB; © APSIF Copenhagen 1984; © Orbis Publishing Ltd 1984: Typeset by Universe; Reproduction by Mullis Morgan Ltd; Printed in Great Britain by Artisan Press Ltd, Leicester

HOME COMPUTER ADVANCED COURSE - Price UK 80p IR £1.00 AUS $1.95 NZ $2.25 SA R1.95 SINGAPORE $4.50 USA and CANADA $1.95
How to obtain your copies of HOME COMPUTER ADVANCED COURSE - Copies are obtainable by placing a regular order at your newsagent, or by taking outa subscription. Subscription rates: for six months (26 issues) £23.80; for one year (52
issues) £47.60. Send your order and remittance to Punch Subscription Services, Watling Street, Bletchley, Milton Keynes, Bucks MK2 2BW, being sure to state the number of the first issue required.

and Eire - Back numbers are obtainable from your newsagent or from HOME COMPUTER ADVANCED COURSE. Back numbers, Orbis Publishing Limited, 20/22 Bedfordbury, LONDON WC2N 4BT at cover price.

AUSTRALIA: Back numbers are obtainable from HOME COMPUTER ADVANCED COURSE. Back numbers, Gordon & Gotch (Aus) Ltd, 114 William Street, PO Box 767G Melbourne, Vic 3001. SOUTH AFRICA, NEW ZEALAND, EUROPE &

MALTA: Back numbers are available at cover price from your newsagent. In case of difficulty write to the address in your country given for binders. South African readers should add sales tax.

How to obtain binders for HOME ADVANCED COURSE - UK and Eire: Please send £3.95 per binder if you do not wish to take advantage of our special offer detailed in issues 5, 6 and 7. EUROPE: Write with remittance of £5.00 per

binder (incl. pep) payable to Orbis Publishing Limited, 20/22 ag ad | LONDON WC2N 4BT. MALTA: Binders are obtainable through your local newsagent price £3.95. In case of oeen write to HOME COMPUTER ADVANCED

COURSE BINDERS, Miller (Malta) Ltd, M.A. Vassalli Street, Valletta, Malta. AUSTRALIA: For details of how to obtain your binders see inserts in early issues or write to HOME COMPUTER ADVANCED COURSE BINDERS, First Post Pty Ltd, 23

Chandos Street, St. Leonards, NSW 2065. The binders supplied are those illustrated in the magazine. NEW ZEALAND: Binders are available through your local newsagent or from HOME COMPUTER ADVANCED COURSE BINDERS, Gordon &

—. Se oe PO Box 1595, Wellington. SOUTH AFRICA: Binders are available through any branch of Central Newsagency. In case of difficulty write to HOME COMPUTER ADVANCED COURSE BINDERS, Intermag, PO Box 57394,

pringfield 2137.
Nate — Binders and back numbers are obtainable subject to availability of stocks. Whilst every attempt is made to keep the price of the issues and binders constant, the publishers reserve the right to increase the stated prices at any time when

circumstances dictate. Binders depicted in this publication are those produced for the UK market only and may not necessarily be identical to binders produced for sale outside the UK. Binders and issues may be subject to import duty and/or

local taxes, which are not included in the above prices unless stated.

COMMON

BASICODE/APPLICATION 4. _,

DENOMINATOR

The main obstacle facing most home
computer users who wish to exchange
software is that of machine compatibility.
Software written for one make of computer
will not, as a rule, run on another. However,
BASICODE, a language recently developed in
the Netherlands, is a new approach to solving
this perennial problem.

Basic has now firmly established itself as the
standard language for home micros. However, as
every home computer user knows, there are
enormous variations in the dialects available. Even
when machines do share a common dialect, such as
Microsoft BAsic, there is no guarantee that a
program written on one type of computer will
necessarily run on a different model.

There are now signs that this may be about to
change. At the beginning of 1984, BBC Radio’s
Chip Shop programme began transmitting
programs in a single dialect of Basic known as
BASICODE, and these programs have been
successfully loaded and run by a wide variety of
different computers.

BASICODE is a new approach to the problem of
compatibility. It was first developed in the
Netherlands for use on Hobbyscoop, a science and
technology programme produced by Teleac, the

Dutch equivalent of the Open University. When
Hobbyscoop first began broadcasting programs in
1978, the programme based its transmissions on
the four most popular machines then available —
the Apple, Exidy Sorcerer, Commodore PET and
Tandy TRS-80. There could be only one
transmission for a single machine each week and, as
two of these computers had extremely low data
transmission rates, listeners had to endure up to
eight minutes of screeching. Clearly, this state of
affairs was unsatisfactory, and as new machines
came onto the market, each requiring its own
broadcast, this method of programming
transmission was obviously becoming impossible.

The problem was first tackled by an amateur
radio enthusiast called Klaas Robers, who
produced the first version of BASICODE. This was
based on a common subset of BASIC commands,
which could be understood by all types of
computer. There were teething troubles with the
new system. Although different types of machine
had identical commands, the computers had
different methods of executing them and so the
standardisation broke down. So, together with
Jochem Herrman, Klaas Robers developed an
improved version of the language, known as
BASICODE-2.

The first broadcasts of BASICODE-2 were made on
New Year’s Day 1983, and soon proved to be a

THE HOME COMPUTER ADVANCED COURSE 241

IAN McKINNELL

Common Standard
BASICODE enables micros to
communicate with each other
through a common standard. It
uses a minimum set of BASIC
commands and its own tape
format to allow a dozen or so
micros to swap programs.
BASICODE programs are even
transmitted by radio stations,
allowing listeners with different
micros to use the same
programs

success. Listeners as far away as Belgium, France,
England, Germany and Denmark reported success
in loading the programs. This international
attention was increased when the Dutch broad-
casting service began transmitting BASICODE-2 on its
external network.

BASICODE is founded on the 42 keywords and 11
symbols that most of the machines able to make use
of the language have in common. A BAsic keyword
is not stored as its component characters but is held.
in the form of a single-byte token, a symbol which
represents the keyword. For example, the keyword
LEFTS is represented on the Commodore 64 by a
single byte containing the value 200, rather than by
five bytes containing the ASCII values for L, E, F, T
and S. This makes the work of the Basic interpreter
much more efficient and uses far less RAM.
However, although every computer uses
tokenisation for storing and interpreting a BASIC
program, each machine uses different values for its
tokens. The problem was solved by providing two
translation programs, BASICODE-Save and
BASICODE-Load. After a program has been written
in BASIC, it is SAVEd by using the BAsICODE-Save
program, which substitutes BAsicopE standard
tokens for the computer’s own Basic tokens and
produces on tape a standard BASICODE program.
This program can then be loaded onto another
machine using the BAsiIcopE-Load program, which
substitutes the machine’s Basic tokens for the
BASICODE Version.

This raises a major question — how to ensure
that the various types of computer read and write to
tape in the same way. Once again, although all the
machines use the same principle for LOADing and
SAVEing programs on tape, in practice a program
tape produced by one computer might be very
different from another machine’s tape. Not only
may the data be written and read to the tape at
different transmission rates, but also the start and
stop bits (the markers that tell the computer where
the data begins and ends), and the checksum
methods (the system whereby the machine checks
that data has been transmitted correctly), may also
differ radically. The solution adopted was to
suppress the individual machine’s own tape
handling methods and impose a common
audiocode format for transmission. |

In this format, data is transmitted at 1,200 bits
per second. Each byte of data, preceded by a start
bit (value 0), is transmitted least significant bit first,
and followed by two stop bits (both with a value of
1). For example, the ASCII value of ‘A’ is 65 —
01000001 in binary — and this would be
transmitted in audiocode as 01000001011. A
leader marker, consisting of a sequence of stop bits
transmitted for five seconds, indicates the start of a
BASICODE program. This is then followed by the
code for ‘start text’ (82 in hexadecimal). The
BASICODE program is followed by a checksum byte,
which enables the computer to check the accuracy
of the transmitted data. Another five-second stop
bit sequence indicates the end of data transmission.

Although nearly all machines can be adapted to

242 THE HOME COMPUTER ADVANCED COURSE

This diagram shows how each
of the machines catered for in

BASICODE conforms to the
format. Those machines with

specifications that do not
measure up to the standard
are marked with a cross.
Machines marked with a tick,
have facilities beyond what is
allowed by BASICODE

COMMODORE 64

COMMODORE PET RANGE

SINCLAIR ZX81

BASICODE by software alone, the TRS-80 models I
and III and the Video Genie require a small
interface to be added to them in order to allow tapes
to be read in correctly. The handbook provided
with the Basicode-2 cassette gives full details on
how to construct the interface. For the less DIY-
inclined, a printed circuit board can be obtained
from the Netherlands TRS-80 users group.

In order to write a BASICODE program, you must
first load the sBAsicopE-Save program. ‘This
program not only allows the newly-written code to
be SAVEd on cassette in a standard format, but also
provides a list of subroutines for the computer that
are unique to that particular machine. These
routines are stored between lines 0 and 999 and,
therefore, are unavailable to the programmer.

The reason why these routines are provided by
the BASICODE-2 translation program is because a
command common to several machines — such as
the instruction to clear the screen (CLS) — may be
executed in different ways. Instead of using the CLS
command, the programmer uses GOSUB 100, which
refers to the BASICODE subroutine that performs this
function. |

The first line a programmer writes should be in
the form:

1000 A=(value): GOTO 20: REM program name

where (value) is the maximum number of characters
used by all the strings together. From this point
onwards, the user is given a free hand to program as
desired. There are, however, a number of

This is a list of commands and
operations that are allowed by
BASICODE. Note that many
machines will have a far

greater number of keywords
within the BASIC interpreter
that are not recognised within
BASICODE

NEXT

NOT

ON

OR

PRINT

READ

REM

RESTORE

RETURN

RIGHTS

RUN
SGN

SIN

SOR

STEP

STOP

7B

TAN

THEN

TO
o

<

=

restrictions imposed on the format of the code. For
example, variables must be initialised before any
operations can be performed on them, so before the
command LET T=T+1 can be executed, T must first be
set to zero.

There are also some limitations on the use of
several of the BAsic keywords. For example:

9000 INPUT “PASSWORD?”:AS

is forbidden by BAsicopE-2. The correct format of
this line is:

9000 PRINT “PASSWORD?”: INPUT AS

In addition, a program line may not exceed 60
characters in length, and the screen size is assumed
to be 24 lines of 40 characters.

It is worth considering at this point why all these
restrictions are necessary. In order to include as
many machines as possible within the scope of
BASICODE there was a _ ‘lowest common
denominator’ approach to the design. Inevitably
there was a trade-off between the sophistication of
BASICODE and the number of computers able to
make use of it. This led to a certain amount of
‘levelling down’ to the capabilities of the weaker
machines, thus resulting in the limitations placed on
more advanced models.

For example, a number of features that the home
micro user may look for when purchasing a
computer are not catered for in the BASICODE
format. There is no facility built into the system to

vary the pitch and duration of sounds. There is only
the rather primitive BEEP command to work with.
Similarly, BASICODE only allows the programmer to
produce graphics in low resolution mode. Even
these can only be programmed in black-and-white.

Another problem is that since BASICODE was first
invented there has been a great deal of progress in
the development of _ sasic’s _ structured
programming techniques. There is no allowance
made by BASICODE for case statements such as
WHILE...WEND or even a DEF FN command.
Structuring is left to the GOSUB command on which
the protocol of the language largely depends.

On the other hand, it is worth noting that despite
these restrictions, some of the machines supported
by BASICODE are unable to live up to even the
modest standards set by the protocol. For example,
the Vic-20, ZX81, TRS-80 and Video Genie all
support displays that are less than the 40X24
character standard.

However, the dedicated programmer should
find programming in BASICODE to be a challenge.
Because the rules are restrictive, a great deal of care
has to be taken by the programmer to ensure that
the program written is portable. The programmer
has to remember to stay strictly within the 50 or so
keywords and operators that the language uses, and
use GOSUB commands to replace non-standard
instructions such as CLS. It must also be borne in
mind that some of the machines catered for by
BASICODE have very limited memory capacity, and
long programs, although they may be perfectly
valid in BASICcODE, simply will not fit into the
available RAM on some machines. It would be
perfectly possible to write a program that runs on
your own machine but the acid test would lie in
SAVEing it and trying to run it on another machine.

Within the main program, the programmer may
wish to add certain features that otherwise would
not be allowed. This is achieved by adding REM
statements that explain precisely what the
programmer has in mind. The authors of BASICODE
recommend that these statements be enclosed
within the lines 20000-24999, although this is not
compulsory. After the user has loaded the program,
features that are tailored to suit the user’s own
machine may be added.

Full instructions on the use of BASICODE-2 are
provided in the package supplied by the BBC for
use in conjunction with the Chip Shop series of
transmissions. The user receives a cassette with the
translation programs for the various machines on
side one. Although most computers require loading
of a single BASICODE-2 translation program, the
BBC Micros and the Vic-20 have separate LOAD
and SAVE programs. All of the programs are
separated with spoken messages to help the user
find the appropriate one. On side two of- the
cassette are 18 demonstration programs to give
some idea of the capabilities of BASICODE.

Given the bewildering variations in what is
supposed to be a standard language, the authors of
BASICODE have succeeded remarkably well in
gathering so many machines under one umbrella.

THE HOME COMPUTER ADVANCED COURSE 243

The BASICODE-2 manual and
cassette is available by
sending a cheque or postal
order for £3.95 made payable
to Broadcasting Support
Services to:

Broadcasting Support
Services
P.Q. Box 7

London

W3 6XJ

IAN McKINNELL

RANDOM SELECTION

In the last part of our look at file handling
we discussed sequential files. Now we look
at an alternative but complementary
technique — random access files. Although
this type of file offers very direct and
therefore faster access to data, it uses more
storage space and must be carefully and
uniformly defined.

The limitations of sequential files arise because of
the necessity to read the information stored in
them in order. Random or direct access files
provide a solution to these limitations because the
records within them can be accessed in any order
and very quickly. The word ‘random’ does not
imply that the file is constructed or used in a
chaotic manner, it simply means that any segment
may be written to or read from without the need to
go through all the preceding information.

The obvious problem here is that all files held on
cassette tape must be sequential files. There is no
way to go straight to an item of data in the middle
of a cassette tape; instead the whole tape must be
read through. The only way to use random access
files on a micro that relies on tape storage is to load
all the data into memory, but this limits the file size.
Disk drives are needed for useful random access;
but even so, a few makes of disk drive cannot
support this type of file handling.

The user will also find that random access files

Random Vs Sequentic ial Files _

@ Fast access to | © Conserve space

particular records @ Available on tape -
systems

@ Waste space @ Slow and
@ Need disks cumbersome

| © Predictable data @ Large quantities
of unstructured data

@ When most of the
records in a file are
processed ina
single run of the

| program; for
- example, in a salary
system, where every
employee must be
paid. This is known
as a high ‘hit rate’

that'is in a defined

format

@ When small
numbers of different
records are
accessed; for —
example, in a library
where customers
ask for details of
particular books.
This is a low ‘hit
rate’ application

244 THE HOME COMPUTER ADVANCED COURSE

are easier to work with than the rather
cumbersome techniques needed for sequential
files. The division of the file into records and fields
that we detailed on page 226 is very important
with random access files. To access the file, the
required record must be specified. This record,
together with its fields, will then be put into a
buffer in the computer’s memory, where the fields
may be deleted, amended or printed.

Fortunately, the operating system will take care
of the more complicated structures necessary. It
will need to go quickly to the start of a particular
record on a disk. It cannot do this on a sequential
file, as the only way to locate a record is to read
through all the data, counting off each field
marker. In order to facilitate rapid location, every
record in a random file is the same length. If each
record were 100 bytes or characters long, and the
program asked for record number 83, the
operating system would position the disk head at
the start of the 8300th byte of the file. It has a
record of how many bytes are in each sector of the
disk and can therefore calculate the location of the
required record.

This method of file reading may seem
complicated, and it is certainly slow, but it is far
quicker than reading through a sequential file.
When standardising the length of the files, it is

obviously necessary to choose a size that will
accommodate the longest record stored in the file.
Shorter records must be padded out, usually with
spaces (32 in ASCII code). This is a major
drawback to random files, as the padding required
to make the records up to length is a waste of
precious storage space. This means that random
files are used for small amounts of information
where access needs to be quick, while sequential
files are used for bulk storage where access speed is
unimportant.

Fields within a record must also be set to a
standard length. This is particularly relevant to
systems that provide a random access facility to
specific fields as well as to particular records. For
systems without this facility, it is still a neater and
more efficient way of file definition. The first step
when designing a random access file is to list the
different fields and decide on suitable lengths for
them. A field for a person’s name should be at least
20 characters long, for example, whereas you
would need only two characters in which to store
their age.

Economy is crucial when designing a file, as
there will inevitably be a trade-off between the
amount of information stored and the number of
different records. Quite often, coding systems can
be devised to reduce the amount of space taken up

by data. For example, colour codes 1,2, and 3 for
black, red and green, or date codes such as 841011
for 11 October 1984. Coding systems must remain
internal to the system, however, and programs
should convert the codes back into an easily
comprehensible form once a field is displayed or
entered.

There are two further considerations to bear in
mind when determining record lengths. Most
systems place a limit on the maximum length
available. This can vary from 128 bytes to as much
as 2,048 bytes. Additionally, it is often more
efficient to choose a length that is a multiple or
factor of the sector size — figures such as 64, 128,
256 or 512 are commonly used. This will prevent
individual records from being split over more than
one sector and therefore reduces the number of
disk calls that need to be made.
Random files are generally much easier to

handle than serial files. In both systems, you need
to keep an up-to-date count of the number of
records in a file and quite often the first record in a
random access file (often record number 0) is used
to store this information and other relevant
information such as the file creation date. The
rigid field and record structure would be discarded
for this record.
A record can be amended by reading it in,

changing it and then writing it back to its location.
The record is retrieved by number. Obviously, it is
unreasonable to ask a user to remember which
record is which by number. So a whole variety of
techniques exist for searching and _ locating
particular records, similar in concept to techniques
used to search BAsiIc arrays. Often, one particular
field, perhaps a name field, is used as a key to the
file. The computer reads in the key field and builds
up an index that identifies where various names
are stored.

Unindexed random files are often séarched
record by record just like sequential files.
However, if the records are sorted on the key field,
fast search methods can be used. Suppose, for
example, we wanted to look up ‘Jones’ in a file
sorted by name. We begin by fetching the middle
record and discover that the name is ‘Phillips’.
‘Jones’ is before this alphabetically so we can rule
out everything after this record. Our next guess is
then a record halfway through the first half of the
file. The name might be ‘Hearst’, in which case we
need to go forward again and so on. Such
techniques can be very sophisticated, and many
programs improve performance by keeping large
numbers of the most frequently used records in
RAM so that they are quickly available. As a
result, records can be located and stored within
very large files at a high speed.

Deleting and inserting new records can be
comparatively slow. The crudest method to delete
a record is to copy the record immediately
following it into its space, thus overwriting the
information in it. Every subsequent record is then
copied up one position and finally the record
count is reduced by one. In a similar way, a new

record can be inserted at any point by moving the
last record one number further on and then
copying all the records before it and after the
number of the new record one space further down.
This creates a one-record gap where the new
record can be written.

Neither of these techniques is fast, although
they are more efficient than similar operations
with sequential files. However, insertions and
deletions can be made far more quickly if the file
has a separate index. When a record is deleted, it is
marked as such in the index. The data itself is left
unchanged. As new records are added they can be
slotted into unused or deleted records and the
index updated.

There are two final advantages to consider in
the random file system. Firstly, while it is certainly
quicker to read and write groups of records
together, files can get out of order. Most programs
therefore offer a tidy-up facility that sorts records
into a logical order and discards deleted records.
Secondly, the system of merely marking deleted
records as deleted provides a useful safety net, as it
is easy to retrieve these records if required. This
safety net will operate up to the point when
deleted records are overwritten or discarded by a
tidy-up program.

C: ||

THE HOME COMPUTER ADVANCED COURSE 245

mint
}- $4
Ft 4
bea

bft-d
i

a

mere

+ +

ss: ia

as eal :

a= fon of

es sans

Sox a

dpe
ana s

+4
2)

7 Ww
2
=) S

=
G
x

ei =

KEEPING TIME

If a compute
functions effectively then accurate timing is
required. In this instalment we look at three
types of circuit that produce timing signals
— monostable circuits, D-type and J-K flip-
flops. Later in the course we will investigate
the use of these circuits in the design of

introducing fixed time intervals into logic circuit
operations. When a monostable circuit receives a
pulse input, the output is set to 1 (HI) for a fixed
time interval before returning to its normal zero
output (LO) state. The length of time for which
the output goes HI is determined by the values of
certain components within the circuit. This is an
example of a monostable circuit: |

This device may be triggered by changing X from
HI to LO or Y from LO to HI. By altering the
values of the resistor, R, and the capacitor, C, the
output time can be altered. This graph shows how
the input and output are related:

| Time Interval

The duration of the HI output could be used to
control a tape reader stepper motor or to delay the
transmission of a bit fora certain length of time.

246 THE HOME COMPUTER ADVANCED COURSE

Two monostable circuits can be linked together to
provide a clock pulse, which oscillates at fixed
intervals between HI and LO:

The output produced has a_ characteristic
‘squarewave’ appearance (as shown in our
graphs). The time interval between the clock
output going HI and the next time it goes HI is
known as a cycle. Typically this is one millionth of
a second. It is this continuous clock signal that is
the computer’s heartbeat, marshalling the many
functions that are carried out in the CPU. The
following diagram indicates the names given to the
‘edges’ of the squarewave graph, where a pulse
changes from HI to LO, or vice versa:

Leading Edge Trailing Edge

Let us now look at two new types of flip-flop
whose actions are governed by the regular pulses
of the clock.

THE D-TYPE FLIP-FLOP
The D-type flip-flop has one logic input (D) and a
clock input (CK):

The design of the D-type is based on the R-S flip-
flop, which was discussed in the last instalment. It
is the addition of the clock input, however, that
causes the special method of operation known as
latching. The output from the circuit, Q, is
determined at the start of a clock cycle. If, at this
time, the input at D is HI, then the output Q is set

HI. If, however, the input at D is LO, then the
output Q is set LO.

It can be seen from these graphs that the output Q
can only change during a LO to HI transition of
the clock. Consequently, the D-type is called a
‘leading edge triggered’ flip-flop.

THE J-K FLIP-FLOP
The J-K flip-flop is known as a master-slave
device as it comprises, in effect, two R-S flip-flops
in a dominant-submissive relationship. A master-
slave device allows an input pulse to be stored in
one flip-flop, whilst simultaneously giving an
output from the other unit dependent on the
previous input, all within one clock cycle. An
example of this is the shift operation common to
most processors, where bits within the register are

. moved one place to the left or right. Here is the
=

LIZ DIXON

standard circuit diagram for a J-K flip-flop:

The following diagram shows how the two R-S
types are linked together. One is the ‘master’ and

the other the ‘slave’. Suppose an input is applied at
J or K: if the clock pulse is HI then the input is fed to
the master, if the clock input is LO then the slave
inputs are fed, since R-S types are leading edge
triggered. Thus only one R-S type is activated at
any one time, with the previous input being
‘locked’ inside the other:

In the margin we give a state table for the J-K flip-
flop. This is similar to a truth table but makes use
of a variable, Q,, the previous output. Notice that
HI inputs simultaneously at J and K cause the flip-
flop to change state with each clock pulse. This is
known as togglingand is caused by the feedback of
the slave outputs to the master inputs. With an R-S
flip-flop this is a disallowed input combination
and the output is undefined. By considering Q,, J
and K as inputs, the results from the state table can
be placed onto a k-map.

J

K

J

J

From the k-map we can obtain a logic expression:

Q=Q,.J + Q,.K

This equation is known as the characteristic of the
J-K flip-flop.

Answers To Exercise 7 On Page 229
1)A flip-flop is also known as a bistable because it is
only stable in one of two states (namely, when Q=1
and Q=0 or when Q=0 and Q=1).

2) a) This is not a stable state.
b) The flip-flop will change to the RESET state if the

upper input is considered first, or the SET state if the
lower gate is considered first. |

c) Yes (see answer to b).
d) In order to make all the registers attain a

predictable state on power-up they must be either
reset or set during the initialising of the computer
system.

THE HOME COMPUTER ADVANCED COURSE 247

Erratum

In the diagram of a full adder
circuit on page 165 in Issue 9
the annotation was incorrect.
The ‘sum’ and ‘carry’ labels
should be interchanged on each
half adder and in the final
output. The caption is correct

tt —_

CARRIER TONE
The transmission of computer data via the
telephone network requires the use of amodem or
acoustic coupler, as a telephone line can handle
only a limited range of frequencies. When a link is
established between two machines, a constant
signal called the carrier tone is transmitted. You
can hear the carrier tone just before you push the
telephone handset into the acoustic coupler, or by
picking up the handset during transmission with a
modem (the latter is inadvisable, however, since it
is liable to introduce noise into the signal and
corrupt the data).

Most modems and acoustic couplers have an
LED, labelled ‘carrier detect’, on the front panel. If
this should go out then the tone isn’t being received
and there has been a break in transmission. The
frequency of the carrier tone is designed to fall in
the middle of a telephone transmission band, and
the data is ‘modulated’ onto this tone according to
a predetermined system. Thus a ‘1’ might be
represented by a frequency a little higher than the
carrier tone, and a ‘0’ by one a little lower. It is this
system of modulation that determines the
maximum data transmission rates. Most modems
can handle up to 1200 baud, but some devices can
deal with rates as high as 9600 baud.

~~. 7 |

aves crores

In the film Wargames, in which a home
computer user accidentally breaks into the North
American military computer system, the hero
made use of an ingenious program for locating
computers that can be ‘tapped’ via the telephone
networks. The program that he devised simply
dialled up every number for a given area code in
sequence. If it answered with a carrier tone the
number was logged on disk, otherwise the
computer terminated the call and went on to the
next number.

CARRY
All arithmetic relies on the idea of digits being
‘carried’ from one column to another. Computers
use exactly the same technique for performing
arithmetic on the binary numbers that they
process internally. A half-adder is a simple circuit
that can add two binary digits together to produce
two outputs — a sum and a carry. A full-adder
circuit can cope with a third input as well — a
carry-in from the digit on its right. Eight full-adder
circuits can therefore be coupled together to add

248 THE HOME COMPUTER ADVANCED COURSE

two eight-bit numbers together and produce an
eight or nine-bit result. A microprocessor or CPU
contains a general purpose arithmetic and logic
unit (ALU), and one of its functions is to set a
special carry bit in one of the internal registers
whenever such an addition has resulted in nine
binary digits.

CCD
Charge-coupled devices are now replacing
conventional television camera tubes to give
computers visual input or a ‘sense of vision’. This is
particularly applicable to the field of robotics, in
which researchers are attempting to develop
software that will enable an industrial robot to
identify components.

Compared with a conventional television
camera, a CCD system is smaller, lighter and
cheaper to manufacture in large quantities. It
consists of an array of tiny electronic circuits
packed onto a conventional silicon chip. Each
circuit is charged to a known potential, and then
the image is focused onto the array by means of a
conventional lens. Light falling onto a cell will
cause the potential to drain away, allowing the
image to be read electronically. The result will be
an array of bits, perhaps 256 by 256 at maximum.
Dark areas will be represented by a ‘1’ and light
areas by ‘0’. The threshold level— the level of light
that determines whether a bit will be a 1 or 0 — is
determined by the time for which the image is
exposed to the array.

It has been discovered that some dynamic
RAM chips can behave like CCD arrays if the
metal protective covering on the top of the chip is
carefully removed. These chips form the basis of
the low-cost computer vision systems that are now
starting to come onto the market.

CELL
As well as referring to a battery used in a portable
computer, ce// can mean the intersection of a row
and column on a spreadsheet. The interesting
thing about this type of cell is that it can be used for
storing either ‘raw’ data, such as a figure or the
label for a column, or a relationship such as
B4+B2, where the contents of the cell are
expressed in terms of the values of two other cells.

CENTRONICS
Centronics is the trade name of a computer printer
manufacturer whose name has_ become
synonymous with a type of interface that is
developed for its machines. A Centronics interface —
is a ‘parallel’ interface (meaning that data is
carried simultaneously along eight separate lines).
It consists of a plug or socket with 36 pins on it,
although smaller plugs can be used. A piece of
equipment with a Centronics interface can be
relied on to work with other devices with the same
interface. However, because Centronics interfaces
send data in one direction only, they are not used
on devices such as modems, which need to send
and receive data.

The Apricot is an extremely compact three-
piece computer from the British company
ACT, which was responsible for the
successful Sirius business computer. It
comprises the now-familiar processor box,
screen and separate keyboard. Although it
does not attempt to be a ‘true’ portable, it is
light enough to be moved easily.

Designed very much with the business user in
mind, the Apricot comes in two versions: one with
two 32” disk drives and the other with a single 3%”
drive and a built-in 10 MByte hard disk. Although
boasting numerous features designed to appeal to
the serious user, the Apricot makes few
concessions to the home market — it has no colour
graphics, cassette port, games paddles or
television output. Supplied as standard, however,
is a high-resolution monochrome monitor, a single
parallel printer port, a single RS232 serial port, a
connector for an optional mouse, some software
and a quality keyboard.

The most striking thing about the Apricot is the
versatile and innovative keyboard. A novel feature
is the Microscreen — a 40-column, two-row LCD
display located to the upper right of the main keys.
On power-up, the top row of the Microscreen
displays the day of the week, the month, the year
and the time. The date and time may be altered by
using one of the utility programs, and a battery
powered clock keeps the time while the computer
is not in use. |
When the machine is switched on, a test

program is automatically started. This displays the
amount of memory available (256 Kbytes is
standard but this can be upgraded to 768 Kbytes)
and asks the user to insert the MS-DOS master
disk. For users unfamiliar with operating systems
such as CP/M or MS-DOS, a user-friendly ‘menw’
called the Manager allows easy selection of
applications software (such as Supercalc,
Multiplan, Microsoft Basic, etc.) or utilities (such
as the keyboard configurator or screen font
editor).

The Microscreen is software-controlled, so it
acts as more than just a visual display of the time
and date. Six user-programmable keys are
provided, and the functions allocated to these may
be shown at any time on the LCD screen. Thus,
when a program displays an option menu on the
main screen, the same menu may be duplicated on
the Microscreen. Touching the appropriate
function Key is equivalent to selecting the item
from the screen menu by using the Cursor and
Return keys. The only criticism here is that ZX81-

style membrane keys are harder to use and less
positive in action than conventional typewriter-
style keys. |

There are also eight ordinary function keys.
These are inscribed with legends for their normal
functions — HELP, PRINT, MENU, FINISH etc. Like all
Apricot keys, however, these can be reconfigured
with the supplied Keyedit program. The feel of the
Apricot keyboard is up to the high standard
expected of a business computer, but the Control
and Escape keys are in a slightly odd place. To
make the machine easy to move, the keyboard
clips to the underside of the main unit. The heavy
bulk of the separate monitor is enough, however,
to scotch any claim to it being a true portable.

The software supplied with the Apricot is a
comprehensive suite of system utilities and
Supercalc. “What if?’ - type number crunching is
catered for by Supercalc and Superplanner. There
is evidence here, as in those other pieces of
software adapted for use on the Apricot, of a
rather hurried attempt to get it ready in time for
the launch of the computer. Two operating
systems come with the machine, MS-DOS and
CP/M-86. Apricot owners are promised free
copies of Concurrent CP/M-86 when it is ready.
Only version one of Supercalc is supplied with the
Apricot, although versions two and three are
available at discount.

One of the earliest criticisms made of the
Apricot was that the MS-DOS operating system
had been badly implemented and that it was slow
in operation. This problem now seems to have
been overcome. The applications software
supplied with the machine seems to work
reasonably quickly, and benchmark programs to

CHRIS STEVENS

Attractive Offer
The ACT Apricot is one of the
most attractive looking
computers on the market. The
machine is also modestly priced
for a business micro, yet is built
to a high specification. It uses a
16-bit microprocessor with a full
296K of memory as standard,
and comes with a high quality
monitor

THE HOME COMPUTER ADVANCED COURSE 249

HARDWARE/ ACT APRICOT

Microfloppy First
Apricot claims to be the first popular business micro to use the
new generation of small floppy disks. ACT chose the Sony
microfloppy, which uses a floppy disk only 32” wide, enclosed
inside a rigid case. This makes the disk more robust than the
traditional 52” disks. A spring-loaded cover protects the
microfloppy from dust

test Microsoft’s Mspasic are also relatively fast.
Even so, the impression given is that the Apricot
does not run as quickly as one might hope for a
machine with an 8086 processor.

The Apricot’s documentation includes an
introduction for beginners, a comprehensive
guide to the MS-DOS operating system, two
useful guides to Supercalc and Superplanner, and
extensive manuals for Wordstar and Multiplan.
ACT provides little hardware information,
although the supplied utilities leave little to be
desired for setting up the computer. There are no
details on memory mapping or system calls, as
might be needed by a software house trying to
produce independent software for the Apricot,
but this information is readily available from the
manufacturers.

The Apricot has been designed very much with
business use in mind — it is not a system for the
software engineer or the computer hobbyist. If the
Apricot enjoys the success of ACT’s Sirius, we can
anticipate optional plug-in boards from
independent manufacturers, as well as the extra
memory boards and modem from ACT itself.
Ignoring its merits as a highly versatile and
inexpensive business computer, the availability of
MS-DOS software on a computer at this price is
enough to make the Apricot a very attractive
proposition.

Apricot Keyboard
As well as the high quality keys expected on any business micro,
the Apricot has six touch-sensitive keys. These are reserved for
special functions in various programs. Because these functions
change from program to program, the Apricot allows a label to be
displayed above each key, thanks to a 40-character by two-line
LCD screen. The screen can also be used to display the time

250 THE HOME COMPUTER ADVANCED COURSE

Display
A high resolution green
phosphor monitor provit
clear and crisp display

The capacity of the microfloppies is limited, so ACT offers the

black Apricot XI. This has a 10Mb hard disk built-in that replaces
one of the two microfloppies

LCD Display
A two-line liquid display can be
used for messages or as a clock :
or calculator Sony Microfloppy ni

Twin 315K microfloppies are
used for compact and
convenient storage

Dedicated Function Keys
These keys provide standard
functions such as HELP and
REPEAT for different programs

en

ib

ae

ae Touch-Sensitive Function Keys
These six keys can be labelled
by information displayed on the 256K RAM ~~
LCD to match a particular A healthy 256K of F
program provided 1

Apricot Monitor
The monitor has a screen only
nine inches across, yet has a

text display of 132 characters
wide by 50 deep, although itis
normally used in 80 by 25
character mode. The quality is
good and it has a built-in anti-
glare screen.

The weight of the monitor
reduces the Apricot's claim to be /0 Process
a ‘portable’, although some Asecond m
users have apparently opted to used to har
keep one monitor at home and functions
another at work, simply carrying
the main body of the micro to
and fro

ACT APRICOT/HARDWARE

ACT APRICOT

ution green
Onitor provides a
Sp display

8086 with option of 8087 maths
ee

RS232 Port
A serial connection is provided oC N..LlUrwr”w”UCt~w™OC~C~COd~SCi*SC
or printers, modems, and so on Text can be shown as 132 x 50

characters or 80 x 25 characters.
The graphics resolution is 800 x
400 dots in monochrome only

Centronics, RS232, ‘mouse’
socket and internal expansion

One or two Sony microfloppies of
315K or 720K capacity each. The
Apricot XI model has a 10Mb hard
disk and one microfloppy

are

MS-DOS, CP/M-86 and
Concurrent CP/M-86 _ PI

Centronics Port

Aconnection for a standard
Centronics port sn

90 typewriter-style keys plus six
touch-sensitive function keys
complete with LCD screen for

labels

The Apricot’s ROM contains a ted elle ae e ee ri Cl

bootstrap and self-checking Comprehensive and we

programs presented

pleasing machine to use that
has a better specification than top
selling business machines costing
noticeably more. It also looks
good! — Pee

Treg

AM elm SS. She ff. Two expansion slots allow for Although good value for money,
* 256K of RAM is ¢ Saf tm 2 pS ae extra circuit boards such as the Apricot is rather expensive for
Bs as Seatard — : aS = ite i more memory and amodem the hobbyist. It also lacks the

tS ability to use CP/M-80 standard
software

1/0 Processor
A second microprocessor is
used to handle input and output
functions

8087 Socket
There is a space for an 8087
maths co-processor for fast
numerical calculations

CPU
This is a 16-bit 8086
microprocessor

CHRIS STEVENS

THE HOME COMPUTER ADVANCED COURSE 251

[ooo0000 60] {fh [o00000 00} 0000000

cc Gea eras Pees i
—_ EF —_ Lo ate Y «Vee

~, & ost ns
ZA & ae CP” _ WE . ech

o ‘ oP 5 . Ho, se sO \ ooo
’ \\ : ng

wg Nee Ae we seo SFG Oe od pe Eo
€ _ er ss cot ach a ok AS . gar °° eh gm @®

i ye ae KP HEP ye 4 Gee gy? Dor adr Mingo ® so ov ge
ao. ANS \e 0 3° N 9 ago - ae) eve ge a Ps ye GOO’ Ane ye ee

gt ™ 1 HP we eT HP gt? PF 4h. gr x He ¥ GPE GO" DW oh

Oy S gr. s e We ‘on Me a iyo Ow WE HD ne? VO 3 ae CN
° e@ FM ee eo 508 As al e
ge He, Mas Moet eat set iasetiae “pe TaN ee ii oe as SN toe oe ashe
a ae a gt we cape vo ge NY %e Te 2 <0" -c. “os se oe

BVY vcr! Lr OM” oS Oe Or. F ee: Ke KO™” OXY 4 Bagh eo Ke ie
Sr OO ot a © PS ied eo IO ie ee aw EW at Oe oe

Wr ee go < ws oo < % os ANY 7 vs a” Ey” oo xe oe we <{ V <

por 19 Boe © Sry Fa HF aks ah ced HA NFP gs OOP SA, oh? gO”
<a Q>: oe aor ye os Vonks yO ¥ ANe Ys of oo on or oo eps S NS 4” ost

SP gg “Wg © NS. ge” 00 of PEP Pepe Oh od Sag Moe GOO. oh

Bo SSI x xe Spek os sos oe vee A Y8% 5 we 30° nt
CE od BOR OO PPP ah DPT gh ET ye nme ars PX ot Ve 50? <N <O “S Ve NAS av Or se Av aN No” oo” _ ot so 1e? ov”. v0?

SOX tLe AT os oH (CR 9 eg GE 0 “Foe Sg 0 gp Oh ah PE OHA joc™
ADO AGO ASP ME DN AG Vi og Bh 5 FSM oh, FH dt Heh He

co as a> oe oe ose o> A HK We Wr", o> A> ee ase ce yo fe) av?

NG gps? : wo no AiO. AS 3 oe oP «fC yo ep or @ ot pe 9 D>? age) oe

Eg PO AP 0 0S? ne © Wer gcd DY ca” 4 OM a tt NY dh

C2 e e S

iss a Sst fo MS ey 8 ses soos eet 69 we om OP Ae Sa * ap yer ak SAT g BPE EHO” ahh go” ner. ah
oe ee Sf. Ss at oP \es * 8 Aor opt WE

Rae SNe GOP aD Pos MH we” 208 CO ee GP MS Hh any OP nae
oO Vv OF. 2 sy ao° S ~~ yat gy ce 0 s oo Re) sy 5°)

Xl ee” gOe of sy IPO KOE err ow oe o". Owe

es & a a° ae Seo os Soh Se 3 Se al © es iso
ed. 9. 9°

aa 50% Og AR A ee om, sey ae s®
PR gd OK ghey WS 4 HOrod oP, Wig OY se HO 9X gd KAKO gsr rr od HA os”
oF ooe® oo FH (9 O SF Wgor .
Sat Kh Lee ae ce CU
oe a” oO" ow, Fo ee a oe Fo OO MO I he Oe

Org TOR go cs “ach 49 OU add ts
OF ye P wv © 24 HOP ee

is? @ Ae 2) "5 g “ * cee i co

Oo oO? Og de ee
sos of © ‘ vw? ge. gv os ew av x

er he ee
som se 9 spe sea) OWE ok gor ae

aa oe gs gt - e oe ope ge OS
9 em agit ot 1c.

This program is written in Microsoft BASIC so it Poor 1S go’ or we he ,» Ce ot
nould run unchanged on most machines; the ond), oa eA pe HOM age a H™ yO” vag
Fo ae raat twinaketstathetomnat | Soh eg, gs St cP cI 5 oi Wye Oe x A) Oo «©
the PRINT commands, if you don't like the screen . o> He soe ene eof SOP LS 0e ns

display. Og Og ee a HO. WO. OF
On the Spectrum, all assignment statements : se Got Fah Bw pI HA 50h

must begin with the keyword, ‘LET’. Rewrite the oo wo gor oo HO ce nah 4B
following lines as shown: ‘ee SAMMI ass > oo

SOD” cH KS ~ aa?
P40. PP par ne, OF 2S

45 LET L=40 :REM No. of chars. in a question we. 7 ge ooh sa we
50 DIM Y(N):DIM N(N):DIM TS(N,L) Saree
150 LET IS=AS(1):LET PS="A” hg dl
200 IF A=30 THEN PRINT:PRINT “BYE”:STOP el ee
230 IF Y(P)=0 AND N(P)=0 THEN GOTO 290 vo

252 THE HOME COMPUTER ADVANCED COURSE

Learning Tree Does it live in the water?
This diagram shows the |
Animals tree after several 7
games have been played. Five !
different animals have been Y N
learnt, with four questions to :
distinguish between them.
From the sample run given
(shown in red), you can see
how the computer uses the
tree to respond to the player’s
answers in the next game.
This time, the player is ; | Has it got stripes?
thinking of a hedgehog and Does it spout water?
the computer has to learn this
new animal when it discovers YA N
that the player is not thinking
of alion. The computer then
asks fora way to distinguish
between a hedgehog and a
lion so that it can learn the
new animal.

Once you have your own Does it eat trees?
version of the program
running, see if you can include
a camel

Has it got spikes?

Y N

Sample Run

bt Care for a game yes

Does it live in the water ? no

Has it got stripes ? no

Is the animal you are thinking of a Lion 7? no

I give up!!!

What is your animal ? Hedgehog

Flease enter a question that would distinqguis
between a Hedgehog and a Lion

? Has it got spikes

For a Lion the answer would be ? no

I now know 6 different Animals !

Care for a game ?

19 REM Animals game

20 REM 260 IF A=O THEN F=N(P)
SO REM kk Set up #70 GOTO 230
40 N=100: REM Max no of animals 280 REM xX Make a guess at the animal
SO DIM Y(N),N(N), T$(N) 290 AS=TS(P)SGOSUB 150: TS=As
60 C=3:FOR I=1 TO 3:READ Y(I),N(I),T$(I)2NEXT I 300 Q%="Ts the animal you are thinking of "+A%:GOSUB 100 70 PRINT :FRINT "AN TW ALS 1s PRINT S10 IF A=1 THEN PRINT sPRINT LT Oot 1t)2! *s6pTo 256 80 GOTO 190

=a20 REM ** Learn a new animal
90 REM X* Answer YES or NO S30 PRINT:PRINT"I give up! !'!":PRINT "What is your animal "3: INFUT NS 100 PRINT:PRINT @$;" “:: INPUT AS 50 0< OESNS 2 BOSUB™ 150 110 IF Ag="y" OR AS="Y" OR AS="YES” OR AS="yes" THEN A=1:RETURN 350 FRINT:PRINT "Please enter a question that would distinguish” :PRIN
120 IF A$="n" OR AS="N" GR AS="NO" OR AS="noO" THEN A=0:RETURN T “between " 5 A$; " and";T$: INPUT DS
130 PRINT: PRINT"Please answer YES or NO”":GOTO 100 360 Q$="For"+T$+" the answer would be":GOSUB 100
140 REM *x Add A or AN to animal name 370 AS=TS(P) TS (FP) =DS: TS (C+1) =AS: TH (C+2) =NS 150 I$=LEFT#(A$,1):P$=" a " S80 IF A=1 THEN Y(F)=C+1:N(F)=C+2
160 IF I¢="A" OR I$="E" OR If="I" OR Is="0" OR I$="U" OR I$="a" OR I$ 390 IF A=O THEN Y(P)=C+2IN(P) =C+1
="e" OR Ig="i" OR IS="0" OR I$="u" THEN FPS=" an " 400 ¥(C+1)=O:N(C+1) =O: Y(C+2) =O: N(C+2) =0 170 A$=P$+AHs RETURN 410 C=C+2
180 REM *xk Start a new game 420 REM ** End game & loop for another go
190 @$="Care for a game":GOSUB 190 4590 A=INT(C/2) +1

. 200 IF A=0O THEN PRINT:FRINT "BYE! ":END 440 FPRINTsPRINT"I now know "3A3" different Animals '"
210 FP=1 450 GOTO 190 ;
220 REM kx Flay game 460 REM &* Initial Data
230 IF Y(F)=0 AND N(F)=0 THEN 290 470 DATA 2,3,"Does it live in the water”
240 Q¢$=T#$(F):GOSUB 100 480 DATA 0,0, "Whale"
250 IF A=1 THEN P=Y(P) 490 DATA 9,9, "Lion"

THE HOME COMPUTER ADVANCED COURSE 253

DAVID HIGHAM

SSS ST

LIZ HEANEY

Relative
Speeds
Producing this display took
the Commodore 64 nearly 90
seconds and about 50 lines of
program. Producing the same
display on the Spectrum,
however, took about two
seconds and the following
simple program:

4220 GATA =40.25
4250 FOR Ke} TO MN: READ Ul) INEXT &
9300 PLOT Glts UC S 4 DRAW Kae Ut a>
A350 CIRCLE UiSs ees bee

S40 CIRCLE Ui? $O>
sa5G PLOT CLT, Rate UCT se uc ta>
4500 DRAW ECTS) tit ee rORAb DT s Ue PS)
4800 FRUSE &

POWERS OF
RESOLUTION
Although high resolution graphics do not
form part of the Subhunter game being
designed during this project, they are an
interesting feature of any home computer.
There are no easy-to-use high resolution
commands in standard CBM Basic and
hence programs written in BAsic that use
high resolution routines tend to be very slow.

For low resolution purposes the Commodore 64’s
screen is divided into 25 rows of 40 character cells,
making 1,000 cells in all. As we know, each
character is built up from a series of smaller dots,
known as pixels, arranged in eight rows; each
character cell therefore consists of 64 pixels. For
high resolution purposes we need to be able to
switch each pixel on or off individually using a
single bit in the computer’s memory to control
each pixel. This idea is known as bit mapping. As

EXECUTION TIME - 89.6 SECS

254 THE HOME COMPUTER ADVANCED COURSE

each memory location contains eight bits, and the
screen is made up of 64,000 pixels, 8,000 memory
locations are needed to store the high resolution
screen information.

The Commodore 64 is switched from standard
low resolution mode to high resolution mode by
setting bit 5 of location 53265 to one. To set this bit
without disturbing any others, the following
command should be used:

POKE53265,PEEK(53265)0R32

Once high resolution mode has been set, then the
screen receives its information from an 8,000-byte
block of memory. The start of this block of
memory is pointed to by location 53272. This is
the same location that was used in the construction
of user-defined characters in the last article in this
series (see page 232).

The area of memory normally assigned to
screen memory is used to hold colour information
for each eight-by-eight cell of the screen. The 16
colours available on the Commodore 64 can be
represented by only four bits; so the upper four
bits of any location in the screen memory are used
to hold the colour of the pixels that are ‘on’ within a
particular character cell and the lower four bits
hold the colour of any pixels turned ‘off’. It is
therefore possible to have differing pairs of
colours, one for foreground and the other for
background, in every cell on the screen. If we want
a purple background for the whole screen, with
high resolution graphics drawn in black, we need
the following codes:

Colour code for black is 0 = 0000 in binary
Colour code for purple is 4 = 0100 in binary

Putting the two parts together will give us
00000100, or 4 in decimal. POKEing 4 into every
screen memory location (1024 to 2023) will
produce the required black graphics on a purple
background.

Before we can start to draw on the high
resolution screen, the 8,000-byte area that
controls what will be seen must be cleared by
POKEing a zero to each location. This will take
several seconds in Basic. If this is not done, the
screen display will be a mess of dots. This is
because that particular memory area takes
random values when the machine is switched on.

PLOTTING POINTS
A high resolution graphics program needs to be
able to switch on or off individual pixels on the
screen. If each point is given an X and a Y co-
ordinate (X and Y are in the ranges 0 to 319 and 0
to 199 respectively) then the program can identify

———<_— — — °°».

which corresponding bit in the 8,000-byte
memory map is to be set to one or zero.

The horizontal byte position can be found from
the X co-ordinate by the following command:

HB = INT(X/8)

Similarly, the required vertical byte can be found
from the Y co-ordinate:

VB = INT(Y/8)

The first byte of the character cell that contains the
required bit, RO, can be calculated from HB and VB:

RO = VB*320 + HB*8

The byte that contains the required bit will be RO,
plus the remainder when Y has been divided by
eight. This remainder can easily be found from the
right-most three bits of the value of Y. If A= YAND7
and BASE is the address of the first byte in the
8,000-byte block, then the address of the byte, BY,
that contains the bit we require can be found:

BY = BASE+RO+A

The bit within the byte BY can be found by
calculating the remainder when the X co-ordinate
is divided by eight. If B= XAND7 then the following
POKE will set to one the bit that corresponds to the
pixel with co-ordinates X and Y:

~ POKE BY, PEEK(BY)OR(2t(7-B))

: SER en ats

Now that each pixel can be individually turned on,
routines can be designed to draw shapes on the
screen. The following program shows how straight
lines can be drawn from one point (X1,Y1) to
another (X2,Y2). A circle may be plotted by
specifying the co-ordinates of its centre (CX,CY)
and the radius RA. There is also a subroutine that
will draw a triangle given the co-ordinates of its
three corners (XA,YA), (XB,YB) and (XC,YC). You
may wish to experiment by entering co-ordinates
other than those given in the program.

It is interesting to note that the structure of this
program consists of a series of tiered subroutines.
The lowest level routine is the one that plots a
single point on the screen. This subroutine is used
by a higher level routine that draws a straight line.
At a higher level still, the PLOT TRIANGLE routine
uses the PLOT LINE routine three times to construct
its three sides. This approach to programming has
many advantages. It is flexible, since it would be
very easy to design a routine to draw, say, regular
hexagons. Such a routine would call the PLOT LINE
routine, which would in turn call the PLOT POINT
routine. Alternatively, the DRAW TRIANGLE routine
could be used to construct hexagons from
equilateral triangles. In this case the DRAW
HEXAGON routine would form a fourth tier to the
program structure.

THE HOME COMPUTER ADVANCED COURSE 255

Point To Point
The dot pixels that make up
the Commodore 64 hi-res
screen cannot be accessed
directly: the 40 x 25 text
screen is mapped onto 8,000
bytes of RAM, each text
position being described by
eight bytes. A dot pixel’s
position is described in hi-res
by X, its distance (in pixels)
from the left of the screen,
and Y, its distance from the
top of the screen. These
numbers must be converted
into the address of the byte
that contains the pixel, and

_ the number of the relevant bit

LIZ DIXON

in that byte

é3 R
7a PF
60 POKE S2260,0 ;

70 :

ion

110

130
i140
130
140
170
180
id
200
210

Co) Oo ho
mo

co a

ELE HR WW ww oo it hoe Oo wt OF

(| z=

ci & 2

Cx eo

mm ©

. ty

MO UVUBWNH- OOO NO C&S Ww eo i Gi me

So ao

reey fo eS 4

“Mw NM OO oo Oo mo OO oo Oo oa & & Oo & Oo O

=

onNeUBWN © O

1000

10106

idgzo

GOTO

1030

1040

1050

1040

i070

256 THE HOM

FOR 1=1024 TO 2023:

<0

‘Cx=100:

EM *#** HI-RES DEMO #*%#
RINT CHR$(147): REM CLEAR SCREEN

REM COLOUR BORDER BLACK

REM ##2#2 COLOUR SCREEN MEMORY ARER *###

POKE 1,4: NEXT I

REM #*#8 SET BIT MAP POINTER ***%
BASE =8172: POKE S32/72.

REM #*** CLEAR BIT MAP MODE *###
FOR I=BASE TO BASE + 7?99:POKE 1,0:NEXT

REM ##*# SET GIT MAP MODE *<*F*
POKE 392465, PEEKIS3260) CR 32

REM ##*2 DRAW STRAIGHT LINE *##*#

Xi=20: X2=190: Yi=15:s Y2=150

GOSUB S00: REM PLOT LINE

REM #2#*## DRAW CIRCLE ##2+

C¥=150: CyY=100:; RA=460

GOSUB F000: REM PLOT CIRCLE

#222 ANOTHER CIRCLE *#2#*

CyY=60: RA=2U

GOSUB FOU: FLOT Cincle

REM ##22 DRA TRIGNGLE ##*## :
KS=200:XB=250:*XC=300:y¥A=50:7,B=1001s7C=sn

GOSUB 600: KEM PLOT TRIANGLE

GOTO 450: REM END OF MAIN FROGRAM

REM ###* PLOT TRIANGLE SUBROUTINE ##2%

XB: Yis=YA: YZ2Z=7YB Kia: x
nO: REM PLOT LINE GOSUB BO

U fei

HT

MiexMB: XP=xCi Ylew=v¥G: Y2=YC
GOSUB 800: REM PLOT LINE
MiexXC: X@eKa: YisYE: ¥2=YA
GOSUB S00: REM PLOT LINE
RETURN

REM #2222 PLOT LINE SUBROUTINE #2222 |

S=1

IF X2<X%1l THEN Sei

FOR X=X1 TO x2 SIEP S |
YeCvV2rYl 2 €¢R-51 2 CASH +71

GOSUB 1000: REM PLOT FOINT

NEAT xX
RETURN

REM *##% PLOT CIRCLE SUBROLITINE #2

FOR ANGLE = 0 TO 28ri SIEP .U4
S=INT (RASCOSCANGLE?+CxX)
Y=INT (CY-RA#SSINCANGLE 2? 2
GSOSUB 1000: REM PLOT POINT
NEXT ANGLE
RETURN

REM *#**# PLOT FOINT SUBROUTINE s##+

Le XPSi¥Y GR ACU CR Y219F OR ¥<0 THEN

1070
HB=INT¢X/ S39: VB=INTCY/S)

RO=VB#320+HB*S: A= Y AND ?:

BY=BASE+ROU+A
PURE GY, PEEKCBYIJOK*2 (7-6)?
RET LRN

B=x AND 7

E COMPUTER ADVANCED COURSE

PEEMCSGse/2) OR &

I

Be sure to SAVE this program before running it, as
an incorrect POKE instruction can cause the
machine to ‘hang-up’ or come to an unexpected
halt. When you wish to return to the normal low
resolution screen after running this program, press
the Run/Stop and Restore keys simultaneously.

Subhunter Program
An important part of the subhunter game we are
designing is the routine that updates the score. There
are many ways of allocating scores during a game of
this type; our scoring system will be based on the
following rules.

1) The depth and speed of the sub are important
factors. A fast-moving sub at depth is more difficult to
hit than a slow sub near the surface. The score
allocated to any sub will take account of this.

2) If the sub is hit, its value is added to the player's
score, but if the sub reaches the edge of the screen
unharmed, its value is subtracted from the player's
score. No negative scores will be allowed.

Later in the project, we will deal with the routine that
randomly selects the speed and depth of a sub, butall
we need to know for now is that the sub’s depth is
stored in the variable Y3, and its speed is stored in DX.
The sub’s value can be calculated on this basis. To
ensure that only whole number sub values are
calculated, the INT function is used as follows:

Sub value = INT(Y3+DX*30)

We will store the player's current score in a variable
SC. All that remains to be done is either to add or
subtract the sub value from SC according to whether
the sub was hit or it escaped. The UPDATE SCORE
subroutine is used by two program sections:

1) Where the sub’s position is tested to see if it has
reached the edge of the screen and

2) during the HIT routine.

The flag DS can be set during these two parts of the
program to indicate which part is using the UPDATE
SCORE subroutine. Setting DS = 1 in the HIT routine
and DS = -1 in the EDGE OF SCREEN routine, the
score can be increased or decreased by the sub value
as follows:

SC = SC + INT(Y3+DX*30)*DS

After making sure that the score has not dropped
below zero, the new value of SC can be PRINTed to the
top line of the screen. Add these lines to your program
and SAVE it.

2OUOREM ~~ UPDAIESCORE
5510 SC=SC+INT(Y3+DX*30)*DS
5520 IFSC <OTHEN SO=0
5530 PRINT CHRS(19);CHRS(144); “ SCORE °;
SC;CHRS(157);* ”
5540 RETURN

In the next section we will look at the creation of the
sprites that will be used for the ship, sub, depth
charges, and explosion.

LAST IN FIRST OUT

The stack is a defined area of computer
memory attached to the CPU that acts as a
convenient workspace and takes a vital
part in subroutine execution. It is easily
accessed through the stack instructions,
which permit the quick copying and
restoring of register contents. We examine
the stack and its operation in detail here.

Memory management is the essence of Assembly
language programming, and most of the
instructions we’ve studied so far in the course are
concerned with simply loading data to or from
memory locations. These locations have been
accessed in a variety of ways — the addressing
modes — but the instructions concerned have
always taken a specific memory address as part of
the operand. There is a class of instructions,
however, that access a specific area of memory
but do not take an address as operand. These
instructions operate on the area of memory
known as the stack, and they are known as the
stack operations.

The stack is provided for both the central
processing unit and the programmer to use as
temporary workspace memory. It is a kind of
‘scratch-pad’, easily written to, read from and
erased. The stack operations copy data from the
CPU’s registers into vacant areas of the stack, or
copy data from the stack back into the CPU
registers. These instructions require no address
operand because a specified CPU register, the
stack pointer, always contains the address of the
next free stack location. Thus, anything written to
the stack is automatically written to the byte
pointed to by the stack pointer, and data loaded
from the stack is always copied from the stack
location last written to. Whenever a stack
operation is executed, the stack pointer is
adjusted as part of the operation.

In 6502 systems the stack is the 256 bytes of
RAM from $0100 to S01FF; in Z80 systems the
location and size of the stack are determined by
the operating system, but may be changed by the
programmer. This variation reflects the
differences in the internal organisation of the two
microprocessors (see the diagram on page 136):
the 6502 has a single-byte stack pointer, while the
Z80 stack pointer consists of two bytes.

The contents of the 6502 stack pointer are
treated by the CPU as the lo-byte of the stack
address, and a hi-byte of $01 is automatically
added to this by means of a ‘ninth bit’ wired into
the stack pointer. This extra bit is always set to
one, so 6502 stack addresses are all on page one.

The Z80 stack pointer is a two-byte register
capable of addressing any location between
$0000 and SFFFF — the entire address space of the
Z80 itself. The stack can thus be located
anywhere in RAM, and its location can be
changed by the programmer. This is not
recommended, however, since the operating
system initially sets the stack location and stores
data on it. As the operating system may interrupt
the execution of any machine code program at
any time, and expect to find data relevant to its
operation on the stack, any alteration of the
location of the stack will mean that the data will
not be available to it and the system may crash.

As an example of the use of the stack, consider
the following routine to exchange the contents of
two memory locations, LOC1 and LOC2:

accumulator, and from there copied or ‘pushed’
onto the stack. The contents of LOC2 are then
loaded to the accumulator, and stored in LOC1.
The contents of the top byte of the stack are then
copied or ‘popped’ into the accumulator, which
restores the original contents of LOC1 to the
accumulator. This is copied to LOC2, and the
exchange is complete. Notice that the stack
operations ‘saved’ the contents of LOC1 in
memory as long as needed, but without the
program specifying any memory location —
except, by implication, the next free location on
the stack.

This program fragment shows us a lot about
stack operations. Primarily, they are reciprocal
and sequential. The last item pushed onto the
stack is retrieved by the next pop from the stack.
Successive pushes with no intervening pops write
data into successive stack locations, one ‘above’
the other, while pops without intervening pushes
access successive locations ‘downwards’ from the
current ‘top’ of the stack.

To visualise the stack, imagine writing notes on
postcards and stacking them next to you on the
desk, then reading and discarding cards until the
stack is empty. The most recently written of the
cards remaining in the stack is always the one on
top. For this reason the stack is known as a Last
In First Out (LIFO) data structure. Its converse, a
First In First Out (FIFO) structure, is a queue. It

a

2).
-_ —_
5 =

Zz eos

THE HOME COMPUTER ADVANCED COURSE 257

is conventional to talk about the next free byte in
the stack as the top of the stack, and to imagine
the stack growing upwards. In both the Z80 and
the 6502, however, the stack pointer is
decremented by a push, so that the stack top is
actually at the lower memory address than the
stack bottom. This is less confusing if we describe
the stack as ‘rising towards zero’.

The first program fragment is also typical of
programs using the stack in that the number of
push instructions is exactly counterbalanced by
the number of pops. This is not essential, but
failure to observe this harmony of opposites when
writing subroutines may result in an incorrect
return from the subroutine and consequent
program failure. This is one of the commonest
bugs in Assembly language programs, but can be
fairly easily traced by comparing the number of
pop and push instructions in a program.

The Z80 version of the routine differs
noticeably from the 6502 in one major respect:
the 6502 pushes only single-byte registers onto
the stack, while the Z80 always pushes a two-byte
register. When you push or pop the Z80
accumulator, you also push or pop the contents
of the processor status register, because the CPU
treats these two single-byte registers as one two-
byte register called the AF (accumulator-flag)
register. The power of the Z80 derives greatly
from its ability to handle two-byte registers.

It is a good programming habit to start
subroutines by pushing the contents of all CPU

BEFORE

PROGRAM COUNTER

ae ;
NEXT FREE BYTE eae

258 THE HOME COMPUTER ADVANCED COURSE

INSTRUCTION |

registers onto the stack, and popping them off the
stack immediately before returning from the
subroutine. This ensures that the CPU after the
subroutine call is in exactly the same state as it
was before it, and means that any of the registers
can be used in the subroutine with no fear of
corrupting data essential to the main program.
For example, consider this program subroutine:

Se cee wrisnenanstenonenronccumranannanananninntid

P

PLP
RTS a

Here, the effect of the instructions between
SUBRO and SUBR1 is to push the current register

ALOU
CEE S60
R__ SUBRO
EU

SUM
GSUB
TEST
EXIT
SUBRO

wc Pr riS

—+)' 0 Ui a

Tir si > ep)

e ||| gage |

=<

|

'"O w

_

| >| >

SUBR
SUBR
—

SUBR

NO LOC2
#500

Sir ist ir | oO <i Si<

3
oe

_
_ C5 ee, Be, BE ad

TT

AFTER

PROGRAM COUNTER

The Stack
The Stack is essential in
handling subroutine calls
(such as the 6502’s JSR).
Whenthe‘jumpto
subroutine instruction is first
loaded, the program counter
contains the address of the
next instruction in the
program (SE946 here, the
address of the CLC
instruction); this address is
‘pushed’ onto the stack
causing the stack pointer to be
changed to point to the next
free byte of stack space
($015D here), and the
operand of the jump
instruction (SFOOO here) is
loaded into the program

counter as the address of the
next instruction, thus causing
abranchin program flow —

KEVIN JONES

|

contents onto the stack, and the effect of the
instructions between SUBR3 and SUBR4 is to
restore those contents to the registers. The
substantive instructions in the subroutine are the
two starting at SUBR2, but the second of these is
ineffective since the subsequent instructions
completely change the state of the accumulator.

Notice that the Z80 PUSH and POP instructions
can take any of the register pairs as an operand,
but the 6502 can operate on only the
accumulator (PHA and PLA) and the processor
status register (PHP and PLP). Hence the need for
the register-accumulator transfers (TXA, TAX, TYA,
TAY) in the 6502 version. Notice also that we have
made a deliberate mistake in the Z80 version in
not ‘popping’ all of the registers in the reverse
order to which they were ‘pushed’. It illustrates
the care needed in stack operations, but also
demonstrates that you can push the stack from
one register and then pop that value off the stack
back into a different register — a laborious but
sometimes convenient way of doing data

Answers To Exercises On Page 237
1) This subroutine stores the numbers SOF to $00 in
descending order in the block of $10 bytes reserved by
the DS pseudo-op at LABL1.

The differences in approach and instructions between
the Z80 and 6502 are revealing. The 6502 uses the Y
register as an index to the address LABL1, and the X .
register as a loop counter and source of the data to be
stored. Notice that the X register is decremented two
instructions before the BNE test at ENDLPO, but because
TXA (Transfer X contents to the Accumulator) and the
STA do not affect the processor status register, the test
works on the effects of decrementing X.

The Z80 version uses IX indirect addressing mode to
hold the storage address, and uses the B register as the
counter and source of data. At ENDLPO in the Z80
version we see DJNZ LOOPO, meaning ‘decrement
register B, and jump relative to LOOPO if the result is
non-zero’. This instruction is almost an Assembly
language FOR...NEXT structure, and certainly makes
writing Z80 loops easy and convenient.

2) This routine copies the message stored at LABL1 to
the block starting at the address stored at LABL2. The
value SOD (the ASCII code for Return or Enter) is stored
at the end of the message as a terminator.

transfers between registers.
The functions and uses of the CPU registers

are the subjects of the next instalment, in which
we conclude our general examination of the
Assembly language instruction set. We also begin
the study of machine code arithmetic.

The 6502 version uses the Y register as an index to the
indirect address ZPLO, in the post-indexed indirect
mode. This mode is possible only with the Y register,
and requires a Zero page operand address — hence the
initialisation of ZPLO and ZPLO+1 with the address
Stored at LABL2. The operating system in 6502
machines uses most of the zero page locations, but
locations SFB to SFF on the Commodore 64, and $70 to
S8F on the BBC Micro, are unused, so ZPLO is set to one
of these locations. The Z80 version uses IX in indexed
mode, and IY in indexed indirect mode.

Both routines use a ‘compare the accumulator’
instruction — CMP CR (6502) and CP CR (Z80) — in
which the operand is subtracted from the accumulator
contents, thus affecting the processor status register
(PSR) flags. The accumulator contents are then
restored, while the PSR shows the results of the
comparison.'When the accumulator contains SOD (the
message terminator), the result of the comparison will
be that the zero flag is set. Thus the ENDLPO test will fail
and control will pass to the return instruction.

THE HOME COMPUTER ADVANCED COURSE 259

COURTESY OF CAMPUTERS

John Shirrett

Business System
Shown here is the Lynx Laureate
modular system designed for
business users. 128K of
memory on-board enables it to
support CP/M

THE CAMBRIDGE
CONNECTION
The city of Cambridge is fast becoming an
English ‘Silicon Valley’. Not only are
successful companies such as Acorn and
Sinclair Research based there, but also
lesser-known firms like Camputers, which is
now securing remarkable sales of its Lynx
microcomputer in countries as diverse as
Greece, Norway, Jordan and South Africa.

Camputers began as the brainchild of one man. In
1976, Dick Greenwood started working as a
freelance electronics designer, accepting contracts
from firms such as Pye ‘Telecoms. By the
end of the 1970s, Greenwood had formed his own
company and had become involved in more
specialised development work, also on a
contractual basis. The company diversified into
software development, producing a_ Bar
Management System — a stock control package
that enabled breweries to monitor their sales in
pubs and off-licences.

The company then moved into microcomputer
design, concentrating on projects based around the
Zilog Z80 chip. In February 1981, Greenwood set
up Camtronic Circuits (laterto become Camputers),
and with the help of the government’s Small Firms
Loan Guarantee Scheme work began on the Lynx
home computer in the summer of 1981.
Greenwood’s stated aim was to ‘teach the Z80A to
dance around problems, not barge through them’.

In charge of the hardware development side of
the project was John Shirreff, a graduate of
Cambridge University, who joined the company

260 THE HOME COMPUTER ADVANCED COURSE

after working in the rock music industry. Software
development was handled by Davis Jansons, who
wrote the version of Basic used by the machine.

When it appeared in 1982, the Lynx was
considered a very professional-looking machine.
Packaged in an attractive grey casing, with a full
QWERTY-style typewriter keyboard, the
computer came equipped with a standard 48 Kbyte
memory that could be expanded to 192 Kbytes.
The machine had the ability to display up to eight
different colours, with a high resolution mode of
248 X 256 pixels. It also had a built-in speaker to
take full advantage of its audio capabilities.

Unfortunately, the Lynx never really became
popular in the United Kingdom, although sales
abroad encouraged thé company to continue to
develop the basic design. The Lynx 96 appeared
shortly afterwards, and came equipped with over
37 Kbytes of user RAM, as well as the ability to run
5/;” floppy disk drives. Furthermore, the Lynx 96
came with pre-set sound effects on board. Serial
and parallel printer interfaces were available for the
machine as optional extras.

More recently, the company has introduced a
machine aimed at the small business side of the
microcomputer market. The computer is called the
Lynx Laureate, and as it is based around the Z80
microprocessor, it can run under the CP/M
operating system, which gives the user access to the
vast quantity of CP/M software that has been
written in the last decade. This is an important
selling point as few users nowadays would consider
buying a computer, especially for business use, that
lacks adequate software support. Although
designed as a small business machine, the Laureate
is nevertheless compatible with the other Lynx
models and is fitted with a 40-way expansion bus
that allows it to use the full range of Lynx peripheral
packs, including a parallel printer, joystick and
ROM-based software.

Despite this impressive range of available
micros, Camputers, under its present chairman
Stanley Charles, is continuing to develop new
products. In the near future the company is
planning to launch an alternative version of the
Laureate business machine. This system will be
available as an integrated package, as opposed to
the modular layout of the present design. There are
also plans for a UK relaunch of the Lynx 48, under
the name Leisure. This will be aimed specifically at
the home and games computer market — an area in
which the company feels its machines have been —
unfairly neglected. Looking further ahead,
Camputers is working on a machine that the
company expects will be fully competitive with the
Sinclair QL.

Home computers. Do they send your brain to

sleep —- or keep your mind on its toes?
At Sinclair, we're in no doubt. To us, a

home computer is a mental gym, as
important an aid to mental fitness as a set o
weights to a body-builder.

Provided, of course, it offers a whole
battery of genuine mental challenges.

The Spectrum does just that.
Its education programs turn boring

chores into absorbing contests — not learning
to spell ‘acquiescent’, but rescuing a princess

from a sorcerer in colour, sound, and
movement!

The arcade games would test an
all-night arcade freak — they

're very fast, very _

*

complex, very stimulating. /
And the mind-stretchers are truly

fiendish. Adventure games that very few _
people in the world have cracked. Chess to
grand master standards. Flight simulation
with a cockpit full of instruments operating
independently. Genuine 3D computer desi,

No other home computer in the wor
can match the Spectrum challenge - be
no other computer has so much softwar
such outstanding quality torun.

package. And you can buy one for
£100. a

—| on | on ||

INVOICE

Iststocks last

ill be with the

4

tw

TODAY.

dtoday—no e Car
stamp necessary!

Lege

eleaeele
Tale (cme se eoloie hale

post th

you will be sent the first volume

free along with the second

B, choosing a standing order,

ORDER

z
2

a
*

i
p

are
P
e
e

E
E
R
E

S
e

F
s

S
O
R

js
2

e
2

s
e

a

aan n
e
e

e
t
e
e
n
e
e
n
s
e
n
t
e
n
t
e
n
s
e
u
t
n
s
n
s
a
n
n
e
n

onan etnsnntenarainststuinsinstsnsnsasnsneinshnsntrssuuendnaeevenn'antetenteatnisnnt scheeweensenseateaeatestunpeeneneuterentetentonee/tentns
e
n
t
e
r
i
t
i
s

e
t

s
e
s
a
m
i
n

m
p
m
e
e
t
e

i
i
i

a

m
e
n
a

;

a
a
n

a

a
a

~
~

o
e

w
n

i
n
n
a
t
e

m
s
n

e
e
n

r
t

e
t
r
e
e

c
e
n

ae
a

r
e
e

n
n
n

A
 I
L
O

E
L
L

TRIS

T
F
 ME
”
 ANCE K

N
E
E

a
T

S
E
S
E

B
s

<
R
E
E
S
E

5s

¥
a
s

=

a
;

3
a
e

R
e
e

:

ee
3

e
e

:
i

scree
l
e

a

ee a
e

a
e

i
sss

i
.

s
}

i

i
{

;
2

O
L
N

T
A
R

i

E
S

E
E
,

é

N
E

I

A
M
E
T

A
O
E

I
T
S

C
C

T
T
L

I
R

A
L

e
e

T
E

AE
TE

ROO I

T
T

et
I

E
E

f

F

